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1 Introduction to Scaling Vectors and Multi-
wavelets |

f2 fi+ 9

Il

Vo = VieW, -

Haar Basis: ¢ (z) = vH(z) =

f2(z) = ad"(4z) + b (4z ~ 1) + c o (4z — 2) + d 9" (4= - 3)
= (%) ¢ (22) + (£2) 7 (22 - 1)
+[a — 2] pH(22) + [d — =42] pH(22 - 1)

2



¢¥(z) = ¢7(22) +4"(22 -1)

$(e) = ¢7(22) ~¢7 (22 ~1).
Two-Scale Dilation Fquations/Refinement Equations

¢ Haar scaling function
»H:  Haar wavelet

If f(z) € L*(R), ie., [ fll2 = \/J32 |f(z)]2 dz < oo, then

f(:l?) = k—-—-oo 8—-oo ck@':bH(zk:t - e) s

where ¢ := (cke) € £2(R), that is, 32 T2 [ckglz < 0.

LZ(IR) = k-—-oo Wk p
with
Wi = clgem) span {$ff = 28/2pH(2% . —£) |k, £ € Z} |
Wavelet Spaces
Vi = clpagm) span {¢f, = 2F/12gH (2% . —0) |k, € Z} |
Two-Scale Principal Shift-Invariant Spaces with generator ¢¥
Note that

Vi = Vi & We, kel

fine scale — coarse scale @ detail correction




Properties of the Haar Scaling Function and Wavelet

o [ (z)dr =1
o Vanishing Moment: [2° H(z)dz =0

o Two-Scale Dilation Equations:

$H(z) = Tegd"(2z 1)
PH(z) = Tohed?(2z —£)

(Here go = g1 = ho = —hy = 1.

o Compact Support: both ¢¥ and ¥/ vanish outside a closed interval of
finite length; '

e Smoothness: ¢ and ¢ piecewise continuous;

o Orthogonality:

]

k‘ = e
400 WH (9 g _ O)pH (22 — n)de { 2% k=mandf=n

0 otherwise;

[+ $H(2Fg — 0)¢H (22 — n)do 2% L=n
e ‘ 0 otherwise;

oo gH(9ky _ \pH(25z —n)dz = O;

o The one-parameter family {¢™(- — £) | £ € Z} forms an orthogonal
basis of V5. (Thus, the one-parameter family {¢(2F - —¢) | £ € Z} an
orthogonal basis of Vi, for k € Z.)

o The two-parameter family {5 := 2¥/2¢(2% . —£) | k,{ € Z} forms an
orthonormal basis of LZ(IR).



Example 1.1 (Hat-function) Let

[1-jal, Jel<1
h(x).—{ 0 |

, otherwise.
The hat function is a linear B-spline with knots {(—1,0),(0,1),(1,0)})
Define the principal shift-invariant space Vp[h] with generator h by
Vo[h] := clza(r) span {h(- - £) | £ € Z}
Exercise : S'how that h generates an MRA! |

Short-hand notation: 7[f] := span {f(- — £) | £ € Z} and o{f] :=
Cle (R)T[f]

Note that

h(z) = —;—h(2w — 1)+ h(2z) + —;—h(?:z: +1) (Verify this!) (1.3)
but . .
[_ h(@)h(z £ 1)de = 1/6 0.

Hence, the integer shifts are not orthogonal to each other. In other words,
the MRA is not orthogonal. '

Does there exist a wavelet ¢ with smallest possible support, say [-1/2,1]7 If
so, then

Y(z) =a-h(2z) +b-h(2z - 1), a,be R.

Now, [, h(z)-¢(z)dx = 0; thus, a possible choice for a and bis a = —(3/5)b.
(Verify this!) Choosing a = 1 gives

 ¢(z) = h(2z) — (5/3) - h(2z — 1).

However, 1 is neither orthogonal to its shifts nor to the nonzero shifts of A.

(Show this!)

Ezxercise : Does there exist a wavelet ¢ associated with h and supported on
[—1,1] that is orthogonal to its nonzero shifts as well as the shifts of h?

6



Example 1.2 Cardinal B-splines.
Terminology:

e The support of a function f, suppf, is the largest closed set for which’

f(z) #0. '
o P,: vector space of all real polynomials of degree at most n;

e C™: vector space of all m-times continuously differentiable functions;

also, let C = C°.
o (' vector space of all infinitely differentiable functions.

Definition 1.4 (Cardinal B-Splines) Let Ni(x) := xpoq1). For m > 2,
define

No() 1= (Nog + Ni)(2) = [%5 Niosa(z — 1) N (2)d

I

Jo Nn-1(z — t)dt.

Fzercise : Calculate Ny and N3!
Ezercise : Show that suppN,, = [0,m)! (Use induction on m!}
Exzercise : Verify, at least formally, that limm oo Npn(z) € C=!

Let VJ* := o[N,], for a fixed m > 1. Then V" consists of all functions
f € C™? N L*R) whose restriction to an interval of the form [(,€ + 1),
¢ € Z, is a polynomial of degree at most m — 1 (Verify this!). Thus, for all
kel:

Vo = {7 € O N IA(R) | fliern € Prn L€ Z)]  (14)

Employing properties of the cardinal B-splines one shows that the collection
{Nm(- =€) | £ € Z} forms a Riesz basis of VJ*. (cf. [7])



Example 1.3 The Hat-function revisited. (Donovan—~Geronimo—Hafdz’n—Roach)

Definition 1.5 (Finitely Generated Shift-Invariant Space) A spaceV
is called a finitely generated shift-invariant space if there is a finile set ¢ =
(@, ...,¢")F of L*-functions such that '

V =dpm span{¢‘'(-—£) |i=1,...,m;L € Z}. (15)
We write . .
7[¢] ;= span{$'(- - £) | i =1,...,r L € Z} (1.6)
and
0'[¢] = Cle(n) T[¢] ' (1.7)
Let Df := f(-/2). The space V is called refinable if \
D(V)cV. (1.8)

Remark: If V = o[@] then V is refinable iff

&(z) = Yadp(2x L), ccR™. (1.9)

Let w € L?(IR) be supported on [0,1] and let V' be the space generated by h
and w:
V = ofh,w]

Introduce new generators by
¢ = w
¢ = (I = Pru)h

_thw) o (hw(41)
" ) oy T

_ <h7w><w7 h(' - 1))

Need

¢ = (¢, #*)T will be orthogonal iff
(ko (- — 1)) = Ldff=td. (1.10)




z(l-2) 0<e<] |
Let )= { 007 ORI S) = a1 - ohxom = ol1 - )"
Choose w(z) := q(z) + ag*(z). Then IA

(hyw)- = (w,h(--1))
= (1/60)(5 + @) (Verify this!)

(w,w) = (1/630)(21 + 9 + a?) (Verify this!)
~ Hence, Eqn. (1.10) reads: -

o? + 30a + 105 = 0,
or o = —15 £ 24/30. Choose (—)-sign!

e

Figure 1: The orthogonal generators ¢! and &°.

-0.25L

Ezercise : Repeat the above example with w(z) := 4z(1 — )Xo,/
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Definition 1.6 (Multiresolution Analysis of Multiplicity r) A multires-
olution analysis of multiplicity r of L*(IR) consists of a sequence of approxi-
mation spaces {Vi }rez with the properties:

Nestedness: For allk € Z, Vi, C L*(R) and Vi € Vipr.

Approximation Property: Uicz Vi is dense in L*(R) and ﬂkez Vi = {0} .
Shift-invariance: If f € Vi then f(- —€) € Vi, for all{ € Z.
Dilation-invariance: If f € Vi then f(2') € Viy1.

Basis: There exists a finite collection of L2 fﬂnctz’ons ¢ = {¢: i =

1,...,r}, called a scaling vector or multiscaling function with the prop-
erty that
L | |
Vo= Vo[¢] = Clp(n) span {¢(~ f) l {e Z} . (1.11)

Finitely Generated Shift-invariant Space with generator ¢
2. The scaling vector ¢ is required to have stable integer shifts:

Ry Y NG < 11X Ced(- = DIl < 3 IICP, (1.12)

eZ 1Y 4 e

for positive constants Ry and R, and all square-summable r x r
matrices (Ce)eez.- ‘

Here

lbllz = V/fr #(z) $7 (z) de. (1.13)

(The transpose of a vector or matriz is denoted by 7.)

An MRA is called orthogonal iff the integer shifts of the scaling vector ¢
form an orthogonal basis of Vg.

Definition 1.7 (Multiwavelet) A finite collection of L%-functions v :=
{ : ¢ = 1,...,7} is called a multiwavelet if the two-parameter family
{2y, == 2k/2¢(2k -—£) : k, € € Z} forms an orthonormal or more generally,
an unconditional basis of Lz(IR)

10



The nestedness of the spaces Vi implies that ¢ satisfies a two-scale matriz
dilation equation or matriz refinement equation

&(2) = Ticz Ge (22— £).| (1.14)

{Ct}iez  x r matrices, satisfying Yz [|Cel]* < o0.

Denote the L?-orthogonal complement of Vi in Viyy by Wiyy. The existence
of a multiwavelet is paramount to finding 7 x r matrices (H;)ecz With the
properties that '

ez Gt Gl_gp = 8¢ Iy, (1.15)
(orthogonality of tnteger shifts for ¢) |
ZIEZ Hé Hg;ur = 61! Irxry (1.16)

(orthogonality of integer shifts for 3p)

| Zeez Ge H 30 = Orx, (1.17)
(orthogonality between ¢ and ¢)
Yoz G _0¢ Guze + HE 3 Hooov = 6nlyxr,. m,n € Z, (1.18)
Vo+Wr=W)

Here I.4, and O,, denotes the r x r identity, respectively, zero matrix.

Ezercise : Show that the above equations for the matrices (Hy)iez follow
from the conditions given below.

o |P(x) = Teez Hep(2z — ),

o (¢(2k ) _8)3 ¢(2k : —'gi)) = 2’:6“' IfXT7

o [(W(2F - =), (2" - —0)) = 26 po I xr,

. (¢(2k i '—E)v ¢(2k’ iy *é’)) = Orxr-

(Here we defined (1, ¢;) = [n () 93 (z) dz.)
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2 Construction of Daubechies and Spline Wavelets

Objective: Construct a family of L?>-functions ¢ and 1 with the properties:

1. ¢ generates an orthogonal MRA with 1 being the associated wavelet.
This means that ¢y and 1, satisfy the orthogonality relations.

2. The two-parameter family {¢se := 28/2(2F - —£) | k,£ € Z} forms an
orthonormal basis of L?(IR).

3. Jré(z)dx # 0. (Necessary for technical reasons.)

4. ¢ and 9 satisfiy two-scale dilation equations of the form
#(r) = Xe9ed(2z — 1)
() Yehep(22 - £)

1l

5. ¢ and ¥ have compact support. (This implies that the sums in the
above dilation equations are finite.)

6. Vanishing moments for ¢: [gzP¢(z)dz =0, for p = 0,1,..., N — 1,
N > 1.3 Geometrically speaking this means that ¢ is orthogonal to
the space Py-; of real polynomials of degree at most N — 1:

Wi L Py. kelZ.

7. ¢ and thus v should have some degree of differentiability which implies
that ¢ will have a certain number of vanishing moments.

3Vanishing moments are related to the regularity, i.e., the degree of differentiability,
of the function 1, and thus also ¢. The number of vanishing moments is also connected
with the approximation order: If b has N vanishing moments, then ¢ (!) reproduces
polynomials up to degree N — 1, that is,

o = Z arp(z —£), p=0,1,...,N -1

Jinite
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Short excursion into Fourier Theory:

Let f € L*(R). The Fourier transform F(f) of f is defined by

F()w) = fn e f(z)de.| (2.1)

Remarks:

e Some authors put 27 into the argument of the exponential or normalize
the integral by 1/(27) or 1/v/2m.

e For short we write f instead of F(f).

Facts from Fourier Theory
o feIXR)

o Parsival’s Identity: (f,g) = 1/(2r) (f,§), where (f, 9) == [g f(z)g(z)dz.
In particular, || f|l2 = 1/v27 )| f|l2-

e The Fourier transform is a one-to-one mapping of L?(IR) onto itself
whose inverse is given by

f(@) = F(f)=) = 3 Jn e f(w)do. (2.2)

e If f is compactly supported then f is not, and vice-versa. (Uncertainty
Principle of Fourier Analysis: f cannot be band- limited in frequency
and time.)

o Poisson Summation Formula:

T fl@ 4 2ml) = o082, SO (2.3)

(Provided both sums converge).

e [|f@)l < C1+ |w)™™ then f € O™,
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One way to construct the family of Daubechies scaling functions and wavelets
is via Fourier analysis.

Construct a function ¢ that generates an orthogonal MRA on L?*(IR). Note

that ' :
¢(z) =D gep(2z — £) (2.4)
¢
defines an operator T' : L(IR) — L?(IR) by
(T fo)(z) 1= e gefo(2z — £), (2.5)

provided that ¥,]g¢|? < oo. Setting f; := T'f, and applies T to f, one
obtains a sequence {f,}n»o. Idea: Define ¢ as the limit - if it exists — of
this sequence:

l¢ = fallz—= 0 asn — oo. ) (2.6)
(This ¢ is then the fized point of T: ¢ =Té.)

Take the Fourier transform of Eqn (2.4):

$(w) = [3 Tegec™] dlw/2). (2.7)

The expression

mo(w) := %Zc i (2.8)
is called the two-scale symbol of ¢.

Iterating Eqn (2.7) one obtains, at least formally

$ = Iz, mo(“’/Qn)&(O)- (2.9)

Suppose, w.l.o.g., that ¢A>(O) = [r¢(z)dz = 1. If the infinite product in
Eqn. (2.9) converges pointwise for all w € IR (this means that one has to
impose growth conditions on the coefficients {c¢}) to the Fourier transform
of a continuous function, then we may define ¢ by

o) = 7 (1] ) (210)

n=1
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Growth condition: There exists an 5 > 0 such that 3, |g¢| |[¢]" < oo.
Existence of Function: Suppose that .
® Y1 gi-2i9e-2; = 6;;; (Orthogonality to translates!)

o Yoge=2 (4(0) = 1)
and that

mo(@) = [(L+ )2 M), N>1, (2.11)

is such that
L M(w) = T pee™;
2. Yoo |pe| 1" < o0, for some 1 > 0;
3. sup,ex [M()] < 2%

then the sequence of functions f, defined by Eqn. (2.5) with f5 := xpo1)*
converges pointwise to a continuous function f,, whose Fourier transform is
given by

fro = T mow/2™).

n=1

Regularity: Suppose mg(w) factors as above in Eqn. (2.11) and that item
(2) holds. If, in addition,

sup |M(w)M(w/2)- - M(w/2"7")| = B,

then

ool = T2 mo(w/2)] < C(1 4+ Jwl)~NHos Bn/lnlos2) | (2.12)

Let B = inf,(B,). Then

D‘oo € C™, where m is the largest integer strictly smaller than N — B — LJ
' (2.13)

4This is not the only fo that works! See, for instance, [42]
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Determining the {g.}: In terms of the symbol mg(w), the requiremen_t
that {¢(- — £)} forms an orthonormal basis of V = o[¢] reads’

Imo(@)f + |mo(w + ME=1.] (214)

Now suppose that the set of {g,} is finite, say £ = 0,1,..., L. Then mp(w)isa
trigonometric polynomial in sin and cos and, since we require some regularity,
this polynomial should also satisfy Eqn. (2.11). Set M(w) := |mo(w)|? and
N(w) := |M(w)|?. (This is also a polynomial in cosw.)

Objective: We need to find a polynomial M{(w) sﬁch that
M)+ Mw+m)=1 (2.15)

and .

M(w) = (cos2 %)N N(w).

Write A'(w) as a polynomial in sin®w/2 = (1 — cosw)/2:
N(w) = P(sin® w/2).
Set z := sin?w/2. Then Eqn. (2.15) becomes

(1-z)NP(z)+zVP(1 —z)=1. (2.16)

The solutions of Eqn. (2.16) determine the coefficients {g:}!
By Bézout’s Theorem there exist solutions to Eqn. (2.16).

For each N > 1, there exists an associated finite set of coefficients {ge}.
These define the Daubechies’ family of scaling functions yo.

Wavelets: Let h; := (—1)%gi_¢. Then the function

P(z) 1= Te(~1)'g1-e4(22 — ) (2.17)

defines an orthonormal basis for W, = V; © V;; thus the functions {p¢}x ez
form an orthonormal basis of L*(IR).

16
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Properties of the Daubechies’ Wavelets:

o $(z) = L5 g:d(22 — £), go # 0 # gan-1, implies that suppg =
[0,2N —1]. ‘

The higher the regularity the larger the support.

If € C™ and %™ is bounded, then 1 has m + 1 vanishing moments:

Jg oP¥(z)dr = 0, p=0,1,...,m (2.18)

and ¢ reproduces polynomials of degree at most m:

z? = Y apdp(z — £), for some real coefficients a,. (2.19)

e Good localization in time and frequency domain.
e Only the Haar scaling function and wavelet are syrmrietric.

¢ (Unmodified} Daubechies scaling functions and wavelets show bound-
ary effects when restricted to subsets of the real line, e.g. finite or
semi-infinite intervals.

o Daubechies scaling functions and wavelets are not interpolatory. ®

e The Daubechies wavelet 51 is an affine fractal function ® of the type
considered later in these lectures.

e The Haar scaling function and associated wavelet are included in the
Daubechies family if N = 1.

o There are so-called generalized functions or distributions which satisfy
two-scale dilation equations but are not included in the Daubechies
family. One such example is the Dirac § “function”. It satisfies the
dilation equation

3(z) = 20(2z).

8Given a finite set of interpolation points {(z;,y;) | j = 0,1,...,J}, there exists a
finite set of constants {c(k£)} such that y; = 3, c(kf)$(2Fz; — £), for all = 0,1,...,J.

SAn affine fractal function is a function whose graph is made up of a finite number of
affine images of itself. The graph of such a function has, in general, non-integral dimension.
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Cardinal Spline Wavelets (cf. [7])

The mth order fundamental. cardinal spline L, has the interpolation property
with respect to the data {(¢, &) }icz, i-€.,

: 1 ifi=0, ‘
L) = 6 := { 0 otherwise (2.20)
1t is known that L,, can be written in the form
Lin(x) = Ltez cmtNm (17 + 5 — f) ; (2.21)

for some bi-infinite sequence of real coefficients {¢;,¢}. (This bi-infinite se-
quence is determined by solving L, (1) = d;.) Note that L,,, is not compactly
supported!

Theorem 2.1 (Cardinal Spline Wavelets) Let m € IN be fized and let
Wia=VLew (Cf- Egn (1.4)). Define

p(z) = L) (2z —1), mEN, (2.22)

Then the wavelet spaces {W[" }rez are generated by the {y5}:

W = olyp™(2* )] (2:23)

Note that since L, is not compactly supported, the wavelets ¥»™ are not
orthogonal to their translates.

Theorem 2.2 (CorrnpactlyVSupported Spline Wavelets) Letm € IN be
fized. The functions

¥(2) == T ? (G oo (7) Nam(€+ 1 —n)| Nam(22 —£),|  (2:24)

form a Riesz basis of W*. Moreover, suppy™ = [0,2m — 1].
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3 Brief Introduction to Fractal Functions

Let {(z; :=j/2,y;) 17 =0,1,2} bea gfven set of interpolation points. Let
f1 be the unique linear function satisfying

A62)y=y; J=012

Denote by S} the vector space of all linear splines with knots at {j/2% | j =
0,1,...,2%}.

Note that 53 € Si,,, k€ IN.

Define an operator T : S} — S} by

Ao(22) + sofi1(2z), 0<z<1/2
: (3.1)

(Thi)(z) = {

)\1(21‘ - 1) +51f1(2.’l,' has 1), 1/2 <z S 1

where s, £ = 0,1, is the unique affine function such that
(TH)0) = £1(0), (TH)A)=AQ), (TH)/2-)=(TH)(1/2+) = /L(1/2).
(Join-up Conditions)

The s¢, £ = 0,1, are free parameters. Note that T fli is a linear spline with
knots {0,1/4,1/2,3/4,1}.

The iterates of B applied to f; generates linear splines with increasing knot
sets:

fior :=TFfi =T(T*fi) € St,1,  kENN, (3.2)
Exercise : Calculate f, explicitly for yo =0, y1 =1, and y, = 0.5/

Convergence of f; as k — co: If max{|sg,s1} < 1 then fi converges to a
continuous function f as k — oo: Let g and g be two linear splines in S}.

[(Tg)(z) — (Th)(z)] < max{so,s1}|f(2z — ) — g(2z — )|

< max{so,s1}sup{|f(z) - g(z)| | 0 S = < 1}.

19



Setting || flloo := sup{|f(z)] |0 < @ < 1}, one has
ITg — Thlleo < max{so,s1}||f — glleo- (3-3)

Thus, if max{so, s;} < 1 the operator T is a contraction on the linear space of
continuous functions defined on [0,1]. By the Banach Fixed Point Theorem,”
T has a unique fixed point f. Moreover, f is the limit (in the || - ||o-norm)
of the sequence fi as k — oo.

Definition 3.1 (Affine Fractal (Interpolation) Function) The unique
fized point of the operator T defined in Eqn. (8.1) is called an affine fractal
(interpolation) function. (cf. [3, 30])

Self-referential structure of a fractal function: Let f be the affine
fractal function generated by T'.

Tf = f < (z) = A(z) + Thg sef(2z — £). (3.4)

Here

(2z—-1), 1/2<z<1.
0, otherwise

Ao(2z), 0<z 5 1/2
A(z) := { A1

and f was set to be identically zero outside [0, 1].

Eqn. (3.4) expresses the fact that the graph Gy of f is made up of two affine
images of itself, each of which is made up of two affine images of itself, each

of which is ... ad infinitum!

Ezercise : Show that Gy = wb(Gf) U wi(Gy), where we(z,y) = ((z —
f)/?,/\g(lﬁ - E) + 8£y), £=0, 1!/

Note that f(j/2) = y;, 7 = 0,1,2, and, moreover, f(j/2¥) = fiG/25),
§=0,1,...,2%, k € IN. In other words, each space S} is properly contained
in the space F! of all affine fractal functions on [0,1]: Formally

"Banach Fixed Point Theorem/Contraction Mapping Theorem: Let (X,[| - {]) be a
complete normed linear space and let T be a contraction on X, i.e., ||[Tz—Ty|| < Cllz—yll,
0 < C < 1, then T has a unique fixed point z* in X. Furthermore, if z, is any point in
X, the sequence {T*z,} converges to z*.
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Piecewise fractal functions

Qbservations:

e The interpolation values ¥ := {y; | 7 = 0,1,2}, uniquely determine
the affine functions A := {A; | £ = 0,1}, which uniquely determine the
affine fractal function f = f(y.s) for a given set of 8 := {s, | £ =0,1}:

Yy A fys)

Thus, the mapping y ~* f(y;s) is a linear isomorphism.

o Eqn. (3.4) is an inhomogeneous two-scale dilation equation.

¢ The affine fractal function f(-/2) restricted to the interval [0,1/2), re-
spectively, [1/2, 1] is an affine fractal function on its own right generated
by affine mappings Ao = Ao, Aoy = Ao+ — 1) + 81A; — SoAo on [0,1/2),
respectively by Aig = Ay + sodo — 8141 and Ay = A(- — 1) on [1/2,1].

As f = f(y;s) is uniquely determined by y, there exists a canonical basis
for F!: Fix a set of parameters {s; | £ = 0,1} and let y, := {1,0,0},
vy, = {0,1,0}, and g, := {0,0,1}. Let €, be the unique affine fractal function
generated by the interpolation values y;, j = 0,1,2. f y = {y; | 7 =0,1,2}
is any set of interpolation values and f = fy the uniquely determined fractal

function, then

fy =%1oy;e;

26

(3.5)



Figure 2: The cpnonical basis €;.



Definition 3.2 (Piecewise Fractal Function) On each interval of the form
[£,€ + 1) construct a fractal function f;, £ € Z. Then the function

=2 Fexee+1) (3.6)

is called a piecewise fractal function.

=4

Figure 3: A piecewise fractal function

Finitely generated shift-invariant and refinable spaces may be constructed
using these piecewise fractal functions: For instance, is shown shortly that
the space

Vor={g: R = R|glpeny = fr,£ € Z} N L*(R) (3.7)

is spanned by two orthogonal generators. Moreover, the refinable spaces

{Vi}xez form an orthogonal MRA of L*(IR).

28



4 Construction of the DGHM Multiwavelet

(Presentation given here is due to Donovan, Geronimo, and Hardin)

Recall Eqn. (1.10). Start again with the hat function h(z) = (1 — |z|)*.
Introduce a new and yet unknown continuous function w with suppw = [0, 1],

and define Vj := ofh,w].
Idea: Find a function u such that
® u is supported on [~1,1];

® u is a linear combination of h, w, and w(- + 1);

u is orthogonal to its translates u(- - 1) and to w;

. Vo = olu, w].

Deﬁhe
u(r) = (I~ Pk

= h (h7w> w — <haw(' + 1)>

ERTR R e S
Note that w is already orthogonal to its integer shifts. Need
(u,u--1) = 0.

This is equivalent to

(h, h(- = 1)) = Ldfelh). (41)

Refinability implies that w(-/2) € V; i.e., w(-/2) must be a linear combina-
tion of A(- — 1), w, and w(- — 1):

w(z/2) = h(z — 1) + spw(z) + s ,w(z — 1). (4.2)

But Eqn. (4.2) is recognized as an inhomogenous two-scale dilation equation
of the form (3.4)! Thus, if max{|sol,|s1|} < 1, the solution of Eqn. (4.2) is
an affine fractal function. (Note that Ao(z) =  and M(z) =1 —=z.)
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Employing the fixed point equation (3.4), one can derive explicit formulas
for the inner products of fractal functions.

Ezercise : Suppose that f and g are two affine fractal functions generated
by affine map X¢, respectively, pe, £ = 0,1. Use Eqn. (3.4) to derive an
explicit formula for the inner product (f,g)!

Choosing sg = s, =: s causes w to be symmetric about the line z = 1/2.
(Verify this!). In this case, one obtains

' 1
(w,1) = =3
1
(w, w) 2+s ”
’ 6(1 — s)%(1 + s)
(hh(-1) =
» h 6
The orthogonality condition (4.1) then gives
s=~-1/5
Normalizing u and w yields:
w
#(z) =
( (w, w)
u
H(z) = .
@ (u,u)

30



—

Figure 4: The orthogonal generators ¢! and ¢
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Figure 5: The orthogonal multiwavelet 1! and 2.
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Properties of the DGHM scaling vector:

o ¢? is made up of two affine fractal functions; one with support [—1,0]
the other with support [0,1].

e Since |s| = 1/5 < 1/2, the orthogonal generators are elements of the
function space Lip’, & and thus possess a first derivative almost every-
where. This first derivative is an element of L(IR).

e Since the hat function is a linear combination of ¢' and ¢? (Show this!),
the scaling vector ¢ = (¢'@*)T has the same approximation order as
the hat function:

= Zc{q&(z —1£), p=0,1.
¢

e The dilates and translates ¢, remain orthogonal when restricted to
compact intervals. (This is very important when (multi) wavelets are
employed to solve boundary value problems.)

¢ ¢ can handle non-uniform geometries such as irregular grid spacings.

e The scaling vector ¢ has smaller support and higher regularity than
the corresponding Daubechies scaling functlon with the same approxi-
mation order, namely, 2¢.

e Symmetry/antisymmetry

e ¢ is interpolatory (since ¢! and ¢? are fractal interpolation functions).

8A function f is said to belong to the function space Lip! if there exists a positive
constant € such that

[f(z) = F(z')| < Clz —2'| forallz,z’ € R.
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Calculation of Matrix Coefficients for the Scaling Vector:

Analytically

Matrix Refinement Equation:

¢*(z)

(4) = vemiace(

¢'(2z — 5))
(2 —14))

(4.3)

The values of ¢ = (¢'¢*)T at z; = 7/22, j = 1,...,2% are known. (Fixed
Point Equation for fractal functions!) Thus, the entries in the matrices Gy,
£=-2,...,1, can be computed from Eqn. (4.3).

(3\/2"/10 4/5

G2 -1/20 —-3v/2/20

Go = (9/029 —3\})5/20)’

)’ G—I

G,

(

-

3v2/10
9/20

0 0
-1/20 0

)

)

Geometrically (Donovan-Geronimo-Hardin)

o o :=(abc)T, B := (cba)T, and ~ := (def)T;
o (¢%,¢%) = e’ + (1/V2) + 1181 = 1;

o [lali* =181 and e = ¢'(1/2);

o (¢*(- — €),¢’) = 6;;6,. This is equivalent to saying that {a, 3,4} is an

 orthonormal basis of IR®.
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Calculation of the Multiwavelet
Analytically

Solve Eqns. (1)- (1.18)

-1

H, = (\/:?0/20 3\/6;/20)’ " (—9¢§/2o 1/\/6)4

0 ~1/V3

mo= (e ) = (Y )

Geometrically (Donovan-Geronimo-Hardin)

» Look for two wavelets supported on [—1, 1];
o Let 6 := (a'b'c’)T and € := (dlelfl)T;

e (,¢l) = (,d*(-—1)) =0 impliescey=c e a = 0.
=> £ multiple of 8.
Similarly, 4 multiple of a.

o ¥': (a)(h)(B) (symmetry);
o ¥?: (—a)(0)(B) (antisymmetry);
o (P,¢%) = h=-1/V2;
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More on Scaling Vectors and Multiwavelets

Intertwining MRAs

Let ¢ be a finite collection of compactly supported L2-functions generat‘ing‘
an MRA: '
Vi :=o[@(2F)] keZ

Theorem 4.1 (Donovan-Geronimo-Hardin) There ezists a pair of inte-
gers (k,m) and some orthogonal MRA {Vi,}mez such that

Vi €V C Vigm-| (4.4)

{Vi} and {V,,} are called intertwining MRAs.

Intertwining MRAs may be used to construct an orthogonal MRA from a
nonorthogonal. The basic idea is to use some of the generators from Vi, to
modify the generators of V4.

Example 4.1 Piecewise Quadratic Orthonormal Scaling Vector (cf. [38])

Let A = (1 — |z|)* be the hat function, let ¢(z) := (4 — 42%)*, and let
Vo := alh,q]. It follows from approximation-theoretic considerations that
the refinable space Vo has approximation order three, i.e., every polynomial

of degree at most two can be written as a linear combination of the translates
of h and ¢q. Clearly, A and g are not orthogonal generators.

Objective: Find an orthonormal refinable subspace \70 of V; such that
Voo Voo Vio Wi
For this purpose, let

hi(z) = (I — P,q)h(z)

Mw%-%igq&)—gi££§ﬁld$+ll
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Note: g.Lh,.

However, (hy, hi(- — 1)) # 0.

Now choose a function h, with support [0,1] from V;. Note that func-

tions from V) restricted to [0,1] form a three dimensional space o[h(2 -
—1),4(2-),4(2- -1)].

h3($) = (.[ - Pa[,,zl)hl(x).
Need:

o (h2,q) =0=h€eg- N V.
® (h3,h3(' - 1)) =0.

The first requirement is easily satisfied: As ¢t NV} is two dimensional let

p(z) = q(2z)— ¢(2z — 1), antisymmetric about z = 1/2!
28
pe(z) = q(2z)+q(2z-1)— 2—5-h(23: —1).
Thus,

ha(z) = sipr(z) + S2P2($)-

Now

(h37h3(' - 1)) = (hl, hl(' - 1)) - (hl’hz)(hl(' — 1)’h2>,

(Show this!).

<h27 hZ)
(4.5)
Thus,
(hy, hy(- — 1)) = LahalfuCd)ba) (4.6)
The unknowns s; and s; are now determined by Eqn. (4.5):
12552 — 25652 = 0 (4.7)
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Normalization yields:

¢'(e) = 42
$(z) = P

Pla) = b

Figure 6: The orthonormal generators ¢!, ¢?, and ¢>.
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Support Properties of Scaling Vectors

Recall that if ¢ is a scaling function whose refinement equation is

L
d(z) =Y 0d(2z —£), gogr # O,

£=0
then supp¢ = [0, L].
The situation is not as simple for scaling vectors.
Theorem 4.2 Suppose the scaling vector ¢ satisfies
. .
(z) = 3. Gep(2z — 1)
£=0

with Go,Gr, # O € R™". If

1. If Gy is nilpotent ® then suppe C [1/(27 — 1), L};

2. If G is nilpotent then suppe C [0,L — 1/(2" - 1)];

3. If netther Gy nor Gy, is nilpotent then supp¢g = [0, L].

Remark: Tighter bounds can be obtained by considering the individual
entries in the matrices G,. (cf. [39]).

®A matrix M is called nilpotent if some positive integer power of M is the zero matrix:
there exists an n € IN such that M" = O.
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5 Applications
Decomposition and Reconstruction Algorithm

Since Viy1 = Vi @ Wiy, every fiya € Viyr can be decomposed intQ an
“averaged” or “blurred” component fi € Vi and a “difference” or “fine-
structure” component gry1 € Wiyy:

fer1 = fe + grsa-

This decomposition can be continued until fi4; is decomposed into a coarsest
component fy and k difference components ¢,,, m =1,...,k+ 1:

frmi=fo+ta + ...+ g+ grha- (5.1)

This decomposition algorithm can be reversed to give a reconstruction algo-
rithm: Given the coarse components together with the fine structure compo-
nents one reconstructs any fi € V; via reversal of Eqn. (5.1).

Both algorithms are usually applied to the expansion coefficients (in terms
of the underlying basis) of f and g and they involve the matrices G, and H,.

More precisely, the decomposition algorithm gives

Vid fi = Teafd(2*--0)
= Yeal P2 -0+, ﬁZ—l,t'd’(zk—l 1),

where the vector coefficients are, atx_1¢, and B;_, , are related via

i1 =2 pCo_geare and By, , = 3y Dy_g¢ ape. (5.2)

This last equation defines an operator Dy : £2(R") :— 2(IR") x £2(IR") via

Dk(akl) = (ak—l,lyﬁk_l,e)v .k € Zv (5-3)

where the right-hand side is given by Eqn. (5.2).

Note that ay_; and B,_, are sampled only at the even integers (down-
sampling by 2: | 2). '
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g — Oy —F -+ —F ON—_1 —F O
NN N N (5.6)
B, B, - o Bnr_1 Bx

Figure 7: The decomposition algorithm

Oy —F Xy —F --- — QaN_} —r QN
Va / . (5.7)
,31 162 Tt ﬂN—l ﬁN

Figure 8: The reconstruction algorithm

\The reconstruction algorithm is obtained as follows: If Vi, 3 fry =
Yeat (251 —£) and Wi 3 gi = 0 Bi_y ¥(2¥1 - —£), then

are =3 p Co_grar_y g+ Dy_oe By, 4 (5.4)

Again, this last equation implies the existence of an operator Ry_; : (IR x
£(IR") — £2(IR") given by

Ri-1(t-1,6, Br_1,0) = Qe kelZ, (5.5)

with the right-hand side given by Eqn. (5.4).

-Note that only the even indices are used to obtain a;. Zeros are used for the
odd indices (interlacing of zeros or upsampling by 2: 1 2).
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Compression

The finiteness of the decomposition and reconstruction algorithm suggests
the following compression schemes, also called quantization.

Suppose ay € Vi has been decomposed into

ay =+ (a0 By -+ Br)

Choose a threshold 7, > 0, for each level n = 1,..., N.

FOR(n=1ton=N) DO
IF Bl <7
set ||B,1l =0
ELSE retain
This creates a new sequence (By Bn_; -+ B1)-
Reconstruction:
oy — &y — — Qn-1 — Qpn
/ / / /
B, B Broa By

Compression: |lay — an|2 < T

Compression ratio:

42
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Signal Processing

12y — v — (12
e; aT
e N ,
oy — — oy (5.10)
H HT
p /
12 — -+ — |12
G: low-pass filter H: high-pass filter

Signal: discretly sampled function {f(n) | n € Z}. Usually f € L}(RR) (finite
energy); thus, {f(n)} € £#(IR).

Polyphase form: f € £2(R)", r > 1

f(rn)
f(rn+1)
fny:=| flrn+2) |ecRrR. (5.11)

f(rn-}:r~— 1)

Associate with f a sequence y via some linear, continuous, mvertlble, and
time-invariant operator © : £2(IR)™ — £2(IR)":

y:=0Ff. (5.12)

It is well-known that an operator such as O is a convolution operator (cf.
[21]). Le., there exists a bi-infinite matrix ¢ = (g(n)), ¢(n) an r x r matrix,
such that

y=0f=gq=f| (5.13)

q or its z-transform Q(z) := ¥, q(n)z" is called a prefilter for ©.

If r = 1, the identity is commonly used for ©.
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Conditions on Prefilters:

o Orthogonality: ¢ preserves the énei‘gy of the signal.

® Preserving approximation order: if f is a polynomial signal then g * f
are also samples of a polynomial (of the same degree).

Without prefiltering, constant signals may become non-constant.

Compression schemes applied to signals

e Good reconstruction;

. Denoising (uses statistical methods). Cf. {19, 20];

Data and Image Compression
Image: Sequence of gray-scales ranging from 0 (black) to 255 (white).
M x N grayscale image — sequence of length M N (unfolding of columns/rows).

Data/Image compression: Represent the same image by a sequence y of
length (considerably) less than MN.

Lossy compression; information/data is discarded, cannot be recovered.

Apply the compression scheme (5.8) to “Lena” using the DGHM multiwavelet
and compare to the Daubechies D4 = ,¢ and JPEG.

Pictures and information taken from [38].
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Figure 18: Orthogonal Prefiltered DGHM vs JPEG: Compression Ratio 39:1
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Differential Equations

—u”+u=f,  u(0)=u(l)=0. (5.14)

Classical Solution: © € C? and f € C.

Requirements are too strong for some realistic problems such as shock waves,
turbulence, etc.

Weak Solution: Let v € C*.

1 1 1
-—/ u”vd.t-{-/ uvdz =/ fvdz
0 0 0

Integration by parts together with boundary conditions yields:

o W v'de + [} uwvde = [} fudz, (5.15)

or, equivalently,

(', v} + (udv = (f,v). (5.16)

Requirements now are: |u € Hj[0,1] and f € H™?

H30,1] = {f | J" € LA(R); £(0) = f(1) = 0}.

H~' = {all linear functionals  : Hl — IR}.

Galerkin Method: Approximate weak infinite dimensional solution space by
finite dimensional approximation space Vi such that Vi, — H} as k — co.

Exercise: Suppose {€;}1<i<n i3 a basis for some finite dimensional approz-
imation space Vi. Project u onto Vy.:

N
up(z) = Zc,-e,'(:x:), c € R.
=1

Show that teking as v in Egqn. (5.15) all the €;, j = 1,...,N, yields an
algebraic linear system for the unknowns c;!
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Choose as Vi, =V, @ EBLI W,.

e Need multiresolution analysis defined on [0, 1]! Most constructions need
to add boundary functions to avoid unwarrented boundary effects or
need to periodize the problem. '

e Due to its construction based on fractal functions, the DGHM multi-
wavelet is ideally suited for boundary value problems. Moreover, the
DGHM multiwavelet can handle non-uniform geometries!

¢ Resulting matrix in linear system ill-conditioned.

o Preconditioning necessary; exact preconditioner known.
e Multiwavelet bases local bases (short support).

e Two parameters: scale and location.

¢ Ideal for detection of shocks and other singularities.

¢ Fast solvers for resulting preconditioned linear system.
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6 Generalities

Biorthogonal Wavelets:

Instead of requiring

(¢kb ¢k(‘) = 6(!'17 (¢kt7¢k't‘> = OpprOep I

¢ and 1) are to satisfy the biorthogonality conditions

(4’1:@7‘31;1') = e, (¢k£7{bk'€‘> = Spkrbeer ] (6-1)

with respect to the dual bases {p,,} and {t,,}.

Advantages:
o More flexibility.
o Optimal convergence rates for certain integral equations.
e Construction of second generation wavelets.

o Shift regularity and approximation order back and forth between bases
and dual bases.

Oblique Wavelets:

Projection onto subspaces not orthogonal but parallel to certain subspaces.

(Cf. 1))
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